Multifunktionale Ausrüstung von Textilien mit wasserbasierten nanoskaligen Beschichtungssolen

Multifunctional finish of textiles with water-based nano-scaled coating sols using one functional matrix

Vortragende:

1) S. Amberg-Schwab: Fraunhofer-Institut für Silicatforschung (ISC); Germany
2) Yvette Dietzel: Sächsisches Textilforschungsinstitut e.V. (STFI); Germany
Outline

1 Motivation of the project work

2 Development of novel lacquers on the basis of hybrid polymers for fiber finish
 ➢ Inorganic-organic hybrid polymers
 ➢ Materials synthesis by wet chemical processing
 ➢ Basic properties of hybrid polymer coatings

3 Utilized substrates and functionalized water-based inorganic-organic hybrid polymers

4 Sol application by impregnation

5 Influence of the new hybrid polymers on the selected properties of the filter media
 ➢ SEM micrographs
 ➢ Antimicrobial properties
 ➢ Hydrophobic properties
 ➢ Electrostatic properties

6 Summary and outlook
Motivation of the project work

➢ Textile finisher are often confronted with the task of combining different product features/chemistries such as hydrophobic/hydrophilic properties, easy-care, antistatic, flame-retardant and antimicrobial properties in one multi-functional finishing lacquer.

➢ Another challenge is the frequently different fiber chemistry in fiber blends within one textile, which makes it very difficult to find a suitable recipe for the finishing bath.

➢ Objective of the research project was the development of novel/innovative multifunctional and long-term-stable coating systems based on nano-scale inorganic-organic functional layers (ORMOCER®) for the finish of:
 ➢ a) textile fabrics and
 ➢ b) textile threads
for technical textiles, and metallized fabrics.

➢ Such nano-technological material syntheses permit the realization of combinations of properties such as water-/oil-repellency with flame resistance and antistatic and/or antimicrobial effects within one functional matrix.
Innovation - development of novel lacquers on the basis of hybrid polymers for fiber finish

ORMOCER®
adjustable material properties
generate new functions

Inorganic material
Hybrid material ORMOCER®
Organic polymer

ORMOCER®e: developed at Fraunhofer ISC, Trademark of Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. in Germany

11. ThGOT - Thementage Grenz- und Oberflächentechnik, 15. 17. September 2015, Zeulenroda
Innovation - development of novel lacquers on the basis of hybrid polymers for fiber finish

Starting compounds for the synthesis - bifunctional silanes

```
RO          (CH₂)n          R'
RO—Si—RO   joining segment

network former

network modifier or network former

sol-gel-process

hydrolysis and condensation reactions for creating an inorganic network

photochemically or thermally induced curing for creating an organic network
```
Innovation - development of novel lacquers on the basis of hybrid polymers for fiber finish

Sol-gel process: creation of the inorganic network

1. hydrolysis

\[\equiv Si-OR + H_2O \iff \equiv Si-OH + ROH \]

2. condensation

\[\equiv Si-OH + HO-Si \iff \equiv Si-O-Si + H_2O \]
\[\equiv Si-OH + RO-Si \iff \equiv Si-O-Si + ROH \]
ORMOCER® chemistry: speciality of Fraunhofer ISC

ORMOCER® chemistry: structural units and precursors

- precursor type 1
- precursor type 2
- precursor type 3
- precursor type 4

| inorganic network | modified inorganic network | organic crosslinking inorganic-organic network | organic network |

inorganic ↔ organic

11. ThGOT - Thementage Grenz- und Oberflächentechnik, 15. 17. September 2015, Zeulenroda
Flow chart: Production of coating materials via the sol-gel process

- silanes, alkoxides
- hydrolysis, condensation
- solvent exchange
- filtration, centrifugation
- conventional application techniques
- wet film
- curing: thermal, photochemical
- coating
- water, catalyst
- alcohol
- gel
- Sol
Research on sol-gel materials/ORMOCER®s at Fraunhofer ISC

P: Products based on ORMOCER® technology

- separation processes
- batteries (Li+)
- fuel cells
- medical technology
- biodegradable fibers P
- ceramic fibres (T)

- hardcoats PP PPPP
- barriers PP, decoration P
- corrosion protection
- antisoiling/-fogging
- antistatics
- antireflective P
- dielectrics, passivation
- optical waveguides P
- ion conductors
- optical filters P
- piezoelectric
- photocatalytic
- antibacterial
- electrochromic
- transparent conductive
- sensors

- fillers, pigments
- optics
- photonics
- electronics
- medical technol.
- diagnostics
- cosmetics P

- dental composites PP
- electronics
- (micro-)optics P
- ceramic composites
- adaptronic components

fibers, membranes coatings (nano-) particles bulk materials
Innovation - development of novel lacquers on the basis of hybrid polymers for fiber finish

The Challenge

- Development of refining coating system for high-tech materials
- Combination of seemingly incompatible functions and features in one single textile
- Waterbased system

six functions in one refining coating system

- abrasion resistant
- flame retardant
- hydrophobic
- washproof
- antimicrobial
- antistatic
Utilized functionalized water-based inorganic-organic hybrid polymers

- **ORMTEX106-a/m/h**: abrasion resistant, antistatic, antimicrobial, partially hydrophobic
- **ORMTEX127-1-m/h**: antimicrobial, slightly hydrophobic
- **ORMTEX128-h**: antimicrobial system with additional hydrophobic/oleophobic properties
- **ORMTEX129-a/m/f**: slightly antistatic, antimicrobial, reduced flammability, hydrophobic
- **ORMTEX130-a/m/f**: slightly antistatic, antimicrobial, reduced flammability, slightly hydrophobic
- **ORMTEX131-a/m/f**: slightly antistatic, antimicrobial, reduced, flammability, slightly hydrophobic
- **ORMTEX126-h/e**: hydrophobic, antimicrobial, abrasion resistant, improved filter properties for filter materials made of nonwoven
- **ORMTEX124-e**: improved filter properties for filter materials made of nonwoven, abrasion resistant

Legend:
- **a**: antistatic effect
- **m**: antimicrobial effect
- **h**: hydrophobic effect
- **e**: electret effect
Utilized substrates and functionalized water-based inorganic-organic hybrid polymers

Utilized substrates
- Luminex C2 woven fabric, Klopman GmbH, Ratingen (60 % cotton / 40 % polyester; 230 g/m²; twill)
- Polyester woven fabric (Schneider Textilveredlung GmbH)
- Different threats (ALTERFIL)

Finish of textile samples - process parameters
- Substrate pretreatment (plasma or corona pretreatment)
- Dilution of ORMOCER® systems with water
- Combination of ORMOCER® systems with other finishing chemicals
- Process parameters
 - Squeezing pressure (0.2 bar – 6.0 bar)
 - Drying temperature (100 °C - 160 °C)
 - Drying time (5 min. - 50 min.)
SEM micrographs of selected finished woven fabrics - STFI

Luminex, plasma pretreatment
ORMTEX106-a/m/h_TOP

Luminex, plasma pretreatment
ORMTEX106-a/m/h_TOP, 5 x washed

Luminex
ORMTEX106-a/m/h_TOP_cured

Luminex
ORMTEX106-a/m/h_TOP_cured, 5 x washed

Polyester
ORMTEX106-a/m/h_TOP_new

Polyester
ORMTEX129-a/m/f, vacuum extraction, 0.6 bar

Polyester
ORMTEX130-a/m/f, vacuum extraction, 0.5 bar

11. ThGOT - Thementage Grenz- und Oberflächentechnik, 15. 17. September 2015, Zeulenroda
Best results - Agar diffusion plate test (according to DIN EN ISO 20645)

- Bacteria used for microbial tests: *Escherichia coli* (DSM no. 613), concentration of 4.2×10^8

- Conditioning of the test pieces:
The sterilized test specimen were put in petri dishes for 24 hours (48 hours).

- The zone of inhibition generated around the test specimen was not evaluated because the active ingredient is not soluble.

- A test specimen was evaluated with “good” provided that test piece was not covered itself with bacteria; few bacteria colonies could be formed by drying-out and peeling off the agar.
Best results - Agar diffusion plate test
(according to DIN EN ISO 20645)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inhibitory effect</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminex, ORMTEX106-a/m/h, (3.11 %)</td>
<td>No formation of an inhibition zone, good inhibitory effect, significantly reduced microbial growth (only very small germs under the specimen)</td>
<td></td>
</tr>
<tr>
<td>Luminex, ORMTEX106-a/m/h_TOP_cured, 5 x washed, (0.76 %)</td>
<td>No formation of an inhibition zone, very few and very tiny dead germs, 100 % inhibitory effect</td>
<td></td>
</tr>
<tr>
<td>Luminex, ORMTEX128-h, (3.19 %)</td>
<td>No formation of an inhibition zone, significantly reduced microbial growth (only very small germs under the specimen), good inhibitory effect</td>
<td></td>
</tr>
<tr>
<td>Luminex, ORMTEX129-a/m/f, vacuum -extraction: 0.5 bar, (6.6 %)</td>
<td>No formation of an inhibition zone, very few and very tiny dead germs, 100 % inhibitory effect</td>
<td></td>
</tr>
</tbody>
</table>
A good or very good inhibitory effect can be achieved with the following ORMOCER® systems:

- **Filter media:**
 - ORMTEX126-h/e and ORMTEX124-e with solid add-ons from 0.8 % to 3.5 %

- **Luminex:**
 - ORMTEX106-a/m/h, ORMTEX126-h/e and ORMTEX128-h with solid add-ons from 0.8 % to 5.5 %

- **Polyester:**
 - ORMTEX106-a/m/h with solid add-ons of 4 %
 - ORMTEX130-a/m/f with higher solid add-ons
 - ORMTEX127-1-m/h with higher solid add-ons

- The results for the different batches are reproducible.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Sol dilution with water</th>
<th>Solid add-ons [%]</th>
<th>Grade for oil</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORMTEX106-a/m/h_TOP_new + oil-repellent</td>
<td>1 : 0</td>
<td>6,79</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ORMTEX106-a/m/h_TOP_new + oil-repellent</td>
<td>1 : 2</td>
<td>3,38</td>
<td>5 - 6</td>
<td></td>
</tr>
<tr>
<td>ORMTEX129-a/m/f + oil-repellent</td>
<td>1 : 0</td>
<td>6,15</td>
<td>5 - 6</td>
<td></td>
</tr>
<tr>
<td>Polyester</td>
<td>1 : 0</td>
<td>106,46</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Best results - Oleophobic properties (according to DIN EN ISO 14419)

ORMOCER® systems and achieved grades for oil:

- **Luminex woven fabric:**
 - **ORMTEX128-h:** solid add-ons < 2 % ➔ grade for oil: 2 - 3, solid add-ons from 3.2 % ➔ grade for oil: 4
 - **ORMTEX106-a/m/h:** combination with oil-repellent, solid add-ons from 3.4 % ➔ grade for oil: 5 - 6
 - **ORMTEX129-a/m/f:** combination with oil-repellent, solid add-ons from 6 % ➔ grade for oil: 5 - 6

- **Polyester woven fabric:**
 - **ORMTEX128-h:** solid add-ons from 3 % ➔ grade for oil: 3
Results - Electrical properties (according to DIN EN 1149-1)

- **Untreated polyester fabric**: surface resistance of 1.3×10^{14} ohms; volume resistance of 8.0×10^{12} ohms

- **Antistatic functionalized ORMOCER® s (solid add-ons: 3.0 % - 30.3 %)**:
 - Surface resistances of 3.7×10^9 ohms $< R < 1.5 \times 10^{13}$ ohms
 - Volume resistances of 3.6×10^9 ohms $< R < 8.5 \times 10^{11}$ ohms
Summary and outlook

- Suitable ORMOCER® systems to achieve a triple combination of functional properties such as water/oil-repellency, improved antistatic and antimicrobial effects are:
 - ORMTEX106-a/m/h + oil-repellent
 - ORMTEX128-h
 - ORMTEX127-1-m/h
 - ORMTEX129-a/m/f
 - **Solid add-ons** of approximately 3 % - 4 %
 - Textile-physical properties are not influenced.
 - Suitable substrates are Luminex and Polyester woven fabric.

- Suitable ORMOCER® systems to achieve a combination of four functional properties including flame-retardant effects are (Luminex):
 - ORMTEX130-a/m/f
 - ORMTEX129-a/m/f
 - **Solid add-ons** of approximately 16 % - 30 %
 - Suitable substrate is Luminex.
This research and development project was funded by the German Federal Ministry of Education and Research (BMBF) under the funding codes 03X0121C and 03X0121D. All responsibility for the content of this publication lies with the authors.
Contact

Sächsisches Textilforschungsinstitut e. V.
Annaberger Straße 240
09125 Chemnitz

Telefon: ++49 (0) 371 5274 223
Fax: ++49 (0) 371 5274 153
E-mail: yvette.dietzel@stfi.de
Internet: www.stfi.de

Der Inhalt dieser Präsentation gehört dem Sächsischen Textilforschungsinstitut e.V. (STFI). Das STFI übernimmt keine Verantwortung oder Haftung für eventuelle Schäden, die aus der Weitergabe und/oder Nutzung der Informationen aus dieser Präsentation entstehen.
Contact:
Dr. Sabine Amberg-Schwab
Phone +49 931 4100-620
E-Mail: sabine.amberg-schwab@isc.fraunhofer.de
Fraunhofer-Institut für Silicatforschung ISC
Neunerplatz 2 / 97082 Würzburg / Germany
What we offer for our industry partners:

Consulting and concept development

- realization of customer specific material concepts
- functionalizing of surfaces

Implementation

- technology transfer and implementation in industrial processes
- development of methods for process control and quality assurance
- trouble-shooting for mass production processes
- sparring partner for continuous dialogue on topical issues and new ideas

Analytics

- characterization of materials and surfaces